Enzyme-assisted extraction of Ecklonia cava fermented with Lactobacillus brevis and isolation of an anti-inflammatory polysaccharide
|
Won-Woo Lee, Ginnae Ahn, W. A. J. P. Wijesinghe, Xiudong Yang, Chang-Ik Ko, Min-Cheol Kang, Bae-Jin Lee and You-Jin Jeon
|
|
|
|
| |
ABSTRACT |
Fermentation and enzyme-assisted extraction (EAE) improve nutritional and functional properties of foods by increasing the extraction of active compounds, ingestion rates, and body absorption. In this study, we investigated whether applying the EAE process improves the extraction and isolation efficiency of a polysaccharide from fermented Ecklonia cava (FE), which inhibited NO production in lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results showed that the FE using the fungi Candida utilis and two different bacteria, namely Lactobacillus brevis and Saccharomyces cerevisiae increased protein and carbohydrate contents in comparison with those in non-fermented E. cava (NE). Aqueous extracts of fermented E. cava increased extraction yields and carbohydrate content, compared with the aqueous extract of NE. In addition, treating LPS-stimulated RAW 264.7 cells with aqueous extracts resulted in reduced NO production compared to that in LPS-treated cells. Ten EAEs of L. brevis-fermented E. cava (LFE) improved NO inhibitory effects in LPS-activated RAW 264.7 cells and the Viscozyme extract (VLFE) from the resulting extracts showed the highest NO inhibitory effect. We found that the >30 kDa fraction of VLFE led to markedly high inhibition of LPS-induced NO production as compared to that in the 30 kDa fraction (VLFEP) consisted of fucose and markedly decreased NO production induced by LPS stimulation. VLFEP could be useful as an anti-inflammatory agent to suppress macrophage activation.
|
Key words:
anti-inflammatory; Ecklonia cava; enzyme-assisted extraction (EAE); fermentation; Lactobacillus brevis |
|
|
|