Supplementary Table S1. Relative abundance, functional group (FG), and morphologically based functional group (MBFG) of algal species inside and outside of *Pectinatella magnifica*

<table>
<thead>
<tr>
<th>Species</th>
<th>Environmental regimes</th>
<th>Within P. magnifica</th>
<th>In waterbodies</th>
<th>FG</th>
<th>MBFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillariophyceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthoceras zachariasii</td>
<td></td>
<td>-</td>
<td>73.4 ± 73.0 (1.8)</td>
<td>A</td>
<td>VI</td>
</tr>
<tr>
<td>Asterionella formosa</td>
<td></td>
<td>-</td>
<td>29.5 ± 29.5 (0.7)</td>
<td>C</td>
<td>VI</td>
</tr>
<tr>
<td>Aulacoseira ambiguа</td>
<td></td>
<td>-</td>
<td>136.4 ± 45.7 (3.2)</td>
<td>C</td>
<td>VI</td>
</tr>
<tr>
<td>Aulacoseira granulata</td>
<td></td>
<td>303.8 ± 254.0 (3.1)</td>
<td>514.4 ± 227.1 (10.3)</td>
<td>P</td>
<td>VI</td>
</tr>
<tr>
<td>Aulacoseira muzzanensis</td>
<td></td>
<td>-</td>
<td>15.9 ± 13.9 (0.4)</td>
<td>P</td>
<td>VI</td>
</tr>
<tr>
<td>Aulacoseira distans</td>
<td></td>
<td>-</td>
<td>206.1 ± 116.0 (4.6)</td>
<td>C</td>
<td>VI</td>
</tr>
<tr>
<td>Aulacoseira granulata var. antiquissima</td>
<td></td>
<td>-</td>
<td>19.6 ± 6.1 (0.5)</td>
<td>P</td>
<td>VI</td>
</tr>
<tr>
<td>Cyclotella sp.</td>
<td></td>
<td>20.9 ± 20.9 (2.5)</td>
<td>2950.9 ± 2950.9 (34.0)</td>
<td>B</td>
<td>VI</td>
</tr>
<tr>
<td>Cymbella aspera</td>
<td></td>
<td>74.8 ± 74.8 (2.8)</td>
<td>-</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Fragilaria capucina</td>
<td></td>
<td>-</td>
<td>29.3 ± 10.3 (0.7)</td>
<td>P</td>
<td>VI</td>
</tr>
<tr>
<td>Fragilaria crotonensis</td>
<td></td>
<td>-</td>
<td>20.2 ± 6.7 (0.5)</td>
<td>P</td>
<td>VI</td>
</tr>
<tr>
<td>Gomphonema gracile</td>
<td></td>
<td>12.6 ± 6.6 (2.4)</td>
<td>-</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Gyrosigma acuminatum</td>
<td></td>
<td>25.4 ± 25.4 (2.6)</td>
<td>-</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Gyrosigma sp.</td>
<td></td>
<td>-</td>
<td>1.3 ± 1.3 (0.0)</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Melosira varians</td>
<td></td>
<td>-</td>
<td>77.9 ± 41.4 (1.9)</td>
<td>P</td>
<td>VI</td>
</tr>
<tr>
<td>Navicula sp.</td>
<td></td>
<td>4.8 ± 2.7 (2.2)</td>
<td>-</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Navicula symmetrica</td>
<td></td>
<td>36.4 ± 30.5 (2.6)</td>
<td>-</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Nitzschia capitellata</td>
<td></td>
<td>40.5 ± 35.4 (2.7)</td>
<td>0.4 ± 0.4 (0.0)</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Nitzschia fonticola</td>
<td></td>
<td>-</td>
<td>0.2 ± 0.2 (0.0)</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Nitzschia fruticosa</td>
<td></td>
<td>-</td>
<td>0.5 ± 0.5 (0.0)</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Nitzschia gracilis</td>
<td></td>
<td>7.2 ± 4.9 (2.3)</td>
<td>7.6 ± 3.7 (0.2)</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Nitzschia obtusa</td>
<td></td>
<td>-</td>
<td>8.8 ± 6.0 (0.2)</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Nitzschia palea</td>
<td></td>
<td>357.6 ± 204.3 (3.1)</td>
<td>39.3 ± 13.9 (1.0)</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Nitzschia sp.</td>
<td></td>
<td>140.7 ± 140.7 (2.9)</td>
<td>12.8 ± 8.7 (0.3)</td>
<td>MP</td>
<td>VI</td>
</tr>
<tr>
<td>Syneidra acus</td>
<td></td>
<td>-</td>
<td>39.6 ± 10.6 (1.0)</td>
<td>D</td>
<td>VI</td>
</tr>
<tr>
<td>Chlorophyceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinastrum aciculare</td>
<td></td>
<td>-</td>
<td>0.5 ± 0.5 (0.0)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Actinastrum hantzschii</td>
<td></td>
<td>-</td>
<td>179.9 ± 89.3 (4.1)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Actinastrum hantzschii var. fluviatile</td>
<td></td>
<td>-</td>
<td>13.5 ± 13.5 (0.3)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Ankistrodesmus falcatus</td>
<td></td>
<td>-</td>
<td>1.0 ± 0.7 (0.0)</td>
<td>X1</td>
<td>IV</td>
</tr>
<tr>
<td>Ankyra lanceolata</td>
<td></td>
<td>-</td>
<td>0.0 ± 0.0 (0.0)</td>
<td>X1</td>
<td>IV</td>
</tr>
<tr>
<td>Basichlamys sacculifera</td>
<td></td>
<td>-</td>
<td>9.2 ± 6.3 (0.2)</td>
<td>J</td>
<td>V</td>
</tr>
<tr>
<td>Chlamydomonas sp.</td>
<td></td>
<td>-</td>
<td>0.2 ± 0.2 (0.0)</td>
<td>X2</td>
<td>V</td>
</tr>
<tr>
<td>Chodatella citriformis</td>
<td></td>
<td>-</td>
<td>1.3 ± 0.9 (0.0)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Chodatella wratislawiensis</td>
<td></td>
<td>-</td>
<td>0.1 ± 0.1 (0.0)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Closteriopsis longissima var. tropica</td>
<td></td>
<td>-</td>
<td>3.7 ± 3.7 (0.1)</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>Closterium aciculare var. subpronum</td>
<td></td>
<td>-</td>
<td>107.8 ± 47.7 (2.5)</td>
<td>P</td>
<td>IV</td>
</tr>
<tr>
<td>Coelosphaera cambicicum</td>
<td></td>
<td>188.8 ± 135.9 (3.0)</td>
<td>5.3 ± 5.3 (0.1)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Coelosphaera microporum</td>
<td></td>
<td>144.7 ± 144.7 (2.9)</td>
<td>24.2 ± 16.4 (0.6)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Cosmarium botryis</td>
<td></td>
<td>40.3 ± 40.3 (2.7)</td>
<td>-</td>
<td>N</td>
<td>IV</td>
</tr>
<tr>
<td>Crucigenia crucifera</td>
<td></td>
<td>-</td>
<td>0.6 ± 0.3 (0.0)</td>
<td>J</td>
<td>VII</td>
</tr>
<tr>
<td>Crucigenia neglecta</td>
<td></td>
<td>-</td>
<td>4.4 ± 3.2 (0.1)</td>
<td>J</td>
<td>VII</td>
</tr>
<tr>
<td>Desmodesmus abundans</td>
<td></td>
<td>-</td>
<td>0.8 ± 0.7 (0.0)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Desmodesmus abundans</td>
<td></td>
<td>-</td>
<td>1.5 ± 1.1 (0.0)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Desmodesmus bicaudatus</td>
<td></td>
<td>-</td>
<td>4.0 ± 2.0 (0.1)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Desmodesmus denticulatus</td>
<td></td>
<td>-</td>
<td>2.4 ± 1.8 (0.1)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Desmodesmus intermedius</td>
<td></td>
<td>3.2 ± 3.2 (2.2)</td>
<td>1.1 ± 0.7 (0.0)</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Desmodesmus opoliensis</td>
<td></td>
<td>-</td>
<td>3.8 ± 2.9 (0.1)</td>
<td>J</td>
<td>IV</td>
</tr>
</tbody>
</table>
Supplementary Table S1, Continued

<table>
<thead>
<tr>
<th>Species</th>
<th>Environmental regimes</th>
<th>Within P. magnifica</th>
<th>In waterbodies</th>
<th>FG</th>
<th>MBFG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desmodesmus perforatus</td>
<td>-</td>
<td>17.5 ± 15.9 (0.4)</td>
<td>-</td>
<td>J</td>
<td>IV</td>
</tr>
<tr>
<td>Eudorina elegans</td>
<td>435.0 ± 294.5 (3.2)</td>
<td>-</td>
<td>-</td>
<td>G</td>
<td>VII</td>
</tr>
<tr>
<td>Golenkinia radiata</td>
<td>-</td>
<td>2.0 ± 1.2 (0.0)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Kirchneriella danubiana</td>
<td>-</td>
<td>0.4 ± 0.4 (0.0)</td>
<td>X1</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Kirchneriella sp.</td>
<td>-</td>
<td>0.3 ± 0.2 (0.0)</td>
<td>X1</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Micractinium pusillum</td>
<td>31.5 ± 31.5 (2.6)</td>
<td>-</td>
<td>-</td>
<td>X1</td>
<td>IV</td>
</tr>
<tr>
<td>Monoraphidium arcaatum</td>
<td>18.7 ± 6.3 (2.5)</td>
<td>2.7 ± 0.7 (0.1)</td>
<td>X1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Monoraphidium contortum</td>
<td>-</td>
<td>0.2 ± 0.1 (0.0)</td>
<td>X1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Monoraphidium griffithii</td>
<td>2.1 ± 1.4 (2.1)</td>
<td>4.8 ± 1.7 (0.1)</td>
<td>X1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Monoraphidium irregular e</td>
<td>-</td>
<td>0.1 ± 0.1 (0.0)</td>
<td>X1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Oocystis lacustris</td>
<td>-</td>
<td>55.6 ± 27.6 (1.3)</td>
<td>X1</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Pandorina morum</td>
<td>111.4 ± 75.4 (2.9)</td>
<td>-</td>
<td>-</td>
<td>G</td>
<td>VII</td>
</tr>
<tr>
<td>Pandorina unicocca</td>
<td>-</td>
<td>7.9 ± 7.9 (0.2)</td>
<td>-</td>
<td>G</td>
<td>VII</td>
</tr>
<tr>
<td>Pectinodesmus javanensis</td>
<td>-</td>
<td>0.6 ± 0.6 (0.0)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Pediastrum boryanum</td>
<td>-</td>
<td>12.8 ± 12.8 (0.3)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Pediastrum duplica</td>
<td>-</td>
<td>37.7 ± 21.6 (0.9)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Pediastrum simplex</td>
<td>291.7 ± 291.7 (3.1)</td>
<td>23.0 ± 13.5 (0.6)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Pediastrum simplex var. bivensis</td>
<td>-</td>
<td>75.9 ± 67.4 (1.8)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Pediastrum simplex var. duodenarium</td>
<td>-</td>
<td>4.2 ± 4.2 (0.1)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Planktosphaeria gelatinosa</td>
<td>-</td>
<td>319.6 ± 147.0 (6.9)</td>
<td>X1</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Scenedesmus aracuatus</td>
<td>-</td>
<td>2.2 ± 2.2 (0.1)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Scenedesmus ecornis</td>
<td>-</td>
<td>9.5 ± 5.1 (0.2)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Scenedesmus ovulatus</td>
<td>-</td>
<td>0.6 ± 0.6 (0.0)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Scenedesmus quadricauda</td>
<td>271 ± 138.7 (3.1)</td>
<td>101.9 ± 59.6 (2.4)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Scenedesmus sp.</td>
<td>4.8 ± 4.8 (2.2)</td>
<td>-</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Schroederia indica</td>
<td>-</td>
<td>0.2 ± 0.2 (0.0)</td>
<td>X1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Schroederia setigera</td>
<td>-</td>
<td>7.5 ± 2.7 (0.2)</td>
<td>X1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Selenastrum minutum</td>
<td>-</td>
<td>0.6 ± 0.4 (0.0)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Tetradesmus bernardii</td>
<td>-</td>
<td>2.9 ± 2.1 (0.1)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Tetradesmus lagerheimii</td>
<td>42 ± 42 (2.7)</td>
<td>19.0 ± 10.1 (0.5)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Tetradesmus obliquus</td>
<td>365.2 ± 365.2 (3.1)</td>
<td>23.0 ± 10.2 (0.6)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Tetrastrum komarekii</td>
<td>-</td>
<td>10.9 ± 5.1 (0.3)</td>
<td>J</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Treubaria schmidiei</td>
<td>-</td>
<td>3.5 ± 2.4 (0.1)</td>
<td>X1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Treubaria setigera</td>
<td>-</td>
<td>0.7 ± 0.5 (0.0)</td>
<td>X1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Crysophyceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synura uvella</td>
<td>165.4 ± 165.4 (3.0)</td>
<td>3.4 ± 1.2 (0.1)</td>
<td>Ws</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Cyanophyceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anabaena sp.*</td>
<td>66.0 ± 66.0 (2.8)</td>
<td>13.3 ± 7.1 (0.3)</td>
<td>H1</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Anabaena torulosa</td>
<td>-</td>
<td>5.5 ± 5.5 (0.1)</td>
<td>H1</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Aphanizomenon flos-aquae</td>
<td>-</td>
<td>0.3 ± 0.3 (0.0)</td>
<td>H1</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Aphanocapsa delicatissima</td>
<td>0.1 ± 0.1 (1.5)</td>
<td>-</td>
<td>K</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Aphanocapsa holsatica</td>
<td>1.6 ± 1.4 (2.0)</td>
<td>-</td>
<td>K</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Aphanocapsa sp.</td>
<td>-</td>
<td>0.2 ± 0.1 (0.0)</td>
<td>K</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Chroococcus sp.*</td>
<td>-</td>
<td>0.0 ± 0.0 (0.0)</td>
<td>L0</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Microcystis aeruginosa</td>
<td>58.5 ± 33.3 (2.7)</td>
<td>96.2 ± 59.5 (2.3)</td>
<td>M</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Microcystis wesenbergii</td>
<td>29.5 ± 22.0 (0.7)</td>
<td>0.0 ± 0.0 (0.0)</td>
<td>M</td>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>Phormidium tenue</td>
<td>39.1 ± 24.0 (2.7)</td>
<td>1.1 ± 0.9 (0.0)</td>
<td>SI</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Planktothrix kawamurae</td>
<td>76303.3 ± 41334.0 (4.2)</td>
<td>308.9 ± 308.9 (6.7)</td>
<td>S1</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>Planktothrix limosa</td>
<td>-</td>
<td>42.3 ± 42.3 (1.0)</td>
<td>S1</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Planktothrix princeps</td>
<td>-</td>
<td>31.7 ± 29.1 (0.8)</td>
<td>S1</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Planktothrix sp.</td>
<td>40.6 ± 33.5 (2.7)</td>
<td>1.6 ± 1.4 (0.0)</td>
<td>S1</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Planktothrix tenuis</td>
<td>-</td>
<td>21.0 ± 18.9 (0.5)</td>
<td>S1</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Pseudanabaena catenata</td>
<td>1498.4 ± 365.1 (3.4)</td>
<td>15.9 ± 7.4 (0.4)</td>
<td>S1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Pseudanabaena mucicola</td>
<td>11.4 ± 6.1 (2.4)</td>
<td>0.5 ± 0.3 (0.0)</td>
<td>S1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Pseudanabaena sp.</td>
<td>48.7 ± 40.8 (2.7)</td>
<td>-</td>
<td>S1</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Eulagophyceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euglena sp.*</td>
<td>13.0 ± 13.0 (2.4)</td>
<td>1.0 ± 1.0 (0.0)</td>
<td>W1</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

a Numbers indicate values of biomass (μg L\(^{-1}\)) and numbers in parentheses indicate relative abundance (%).

- , not observed.
Supplementary Table S2. Results of similarity percentage analyses illustrating functional groups that differentiate between inside and outside of *Pectinatella magnifica*

<table>
<thead>
<tr>
<th>Responsible group</th>
<th>Average similarity</th>
<th>Ratio similarity / Standard deviation</th>
<th>Species contribution (%)</th>
<th>Cumulative contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>8.23</td>
<td>2.68</td>
<td>14.99</td>
<td>14.99</td>
</tr>
<tr>
<td>P</td>
<td>8.21</td>
<td>2.37</td>
<td>14.95</td>
<td>29.94</td>
</tr>
<tr>
<td>D</td>
<td>5.15</td>
<td>1.43</td>
<td>9.37</td>
<td>39.31</td>
</tr>
<tr>
<td>MP</td>
<td>4.98</td>
<td>1.19</td>
<td>9.07</td>
<td>48.38</td>
</tr>
<tr>
<td>M</td>
<td>4.54</td>
<td>1.17</td>
<td>8.26</td>
<td>56.64</td>
</tr>
<tr>
<td>J</td>
<td>4.24</td>
<td>0.93</td>
<td>7.71</td>
<td>64.35</td>
</tr>
<tr>
<td>X1</td>
<td>4.12</td>
<td>1.26</td>
<td>7.50</td>
<td>71.85</td>
</tr>
<tr>
<td>S1</td>
<td>3.71</td>
<td>1.54</td>
<td>6.75</td>
<td>78.60</td>
</tr>
<tr>
<td>H1</td>
<td>3.00</td>
<td>0.81</td>
<td>5.46</td>
<td>84.06</td>
</tr>
<tr>
<td>Ws</td>
<td>2.98</td>
<td>0.93</td>
<td>5.44</td>
<td>89.50</td>
</tr>
<tr>
<td>G</td>
<td>2.56</td>
<td>0.60</td>
<td>4.65</td>
<td>94.15</td>
</tr>
<tr>
<td>B</td>
<td>1.40</td>
<td>0.41</td>
<td>2.55</td>
<td>96.70</td>
</tr>
<tr>
<td>A</td>
<td>1.22</td>
<td>0.42</td>
<td>2.21</td>
<td>98.91</td>
</tr>
<tr>
<td>N</td>
<td>0.60</td>
<td>0.29</td>
<td>1.09</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Supplementary Table S3. Results of similarity percentage analyses illustrating morphologically based functional groups that differentiate between inside and outside of *Pectinatella magnifica*

<table>
<thead>
<tr>
<th>Responsible group</th>
<th>Average similarity</th>
<th>Ratio similarity / Standard deviation</th>
<th>Species contribution (%)</th>
<th>Cumulative contribution (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>7.45</td>
<td>0.92</td>
<td>19.34</td>
<td>19.34</td>
</tr>
<tr>
<td>III</td>
<td>7.36</td>
<td>1.05</td>
<td>19.11</td>
<td>38.45</td>
</tr>
<tr>
<td>VII</td>
<td>6.85</td>
<td>1.20</td>
<td>17.78</td>
<td>56.23</td>
</tr>
<tr>
<td>I</td>
<td>6.39</td>
<td>1.11</td>
<td>16.60</td>
<td>72.83</td>
</tr>
<tr>
<td>II</td>
<td>4.53</td>
<td>0.94</td>
<td>11.77</td>
<td>84.60</td>
</tr>
<tr>
<td>V</td>
<td>3.28</td>
<td>0.70</td>
<td>8.52</td>
<td>93.12</td>
</tr>
<tr>
<td>IV</td>
<td>2.65</td>
<td>0.83</td>
<td>6.88</td>
<td>100.0</td>
</tr>
</tbody>
</table>