INTRODUCTION

The cosmopolitan genus *Polysiphonia* is widely distributed in most temperate and tropical waters of the world (Abbott 1999). The genus has been one of the largest genera in the Rhodophytes, with approximately 200 species worldwide, and recent monographic studies have divided it into two genera, *Polysiphonia* and *Neosiphonia* (Kim and Lee 1999). *Polysiphonia* is characterized by consisting of prostrate and erect ecoricate axes with four pericentral cells, attaching by unicellular rhizoids in open connection with pericentral cells, lacking vegetative trichoblasts, and branch initials separating at intervals of four or five segments. Spermatangial branches are produced directly from each axial cell and the mature carposgonial branch is four-celled. Tetrasporangia are arranged in straight series on determinate branches (Kim et al. 2000). The taxonomy of *Polysiphonia* at the species level, however, is still in confusion because it is extremely variable in morphology (Maggs and Hoomersand 1993). In the last five years, molecular analyses have been applied to clarify the taxonomic status of *Polysiphonia* species (Choi et al. 2001; McIvor et al. 2001). Kim et al. (2004) also employed DNA sequence from the plastid-encoded *rbcL* gene to assess six Korean samples and compared these with data of *P. morrowii* samples from Chile. They suggested that the specimens of *Polysiphonia* sp. from Chile and *P. morrowii* from Korea could be the same species and *P. morrowii* has been introduced recently from the northwest Pacific Ocean to Chile.

Polysiphonia pacifica was originally described by Hollenberg (1942) based on collections of Dr. C.L. Anderson at Santa Cruz, USA. Hollenberg (1942) provided a taxonomic treatment as many varieties for the species *P. pacifica* along the entire Pacific coast of North America, that is *P. pacifica* var. *delicatula*, *P. pacifica* var. *distans*, *P. pacifica* var. *determinata*, and *P. pacifica* var. *gracilis*. We here report morphology and phylogeny of *P. pacifica* to confirm the relationships among previously described varieties as a loan of type specimens from US and to assess phylogenetic relationships of closely related species using plastid protein-coding *rbcL* gene. *Polysiphonia pacifica* is distinguished by having creeping filaments attached by unicellular rhizoids not cut off by cross walls, four pericentral cells, ecoricate, trichoblasts rare, ultimate branchlets attenuate at the tip but not pungent, and tetrasporangia in long straight series in the ultimate branchlets. The protein-coding plastid *rbcL* gene sequence data show that *P. pacifica* is distinctly different from the superficially similar species, *P. morrowii* and *P. stricta*. However, the *rbcL* sequences of *P. pacifica* var. *pacific* and var. *disticha* are identical though they have morphological variation.

Key Words: Ceramiales, morphology, phylogeny, *Polysiphonia pacifica*, *rbcL*, Rhodophyta, taxonomy

Myung Sook Kim* and Eun Chan Yang1

Research Institute for Basic Sciences, Pusan National University, Busan 609-735 and
1Department of Biology, Chungnam National University, Daejon 305-764, Korea

Polysiphonia pacifica is rhodomelaceous red algal species that includes five varieties in Pacific Ocean: *P. pacifica* var. *delicatula*, *P. pacifica* var. *distans*, *P. pacifica* var. *determinata*, *P. pacifica* var. *disticha*, and *P. pacifica* var. *gracilis*. We here report morphology and phylogeny of *P. pacifica* to confirm the relationships among previously described varieties as a loan of type specimens from US and to assess phylogenetic relationships of closely related species using plastid protein-coding *rbcL* gene. *Polysiphonia pacifica* is distinguished by having creeping filaments attached by unicellular rhizoids not cut off by cross walls, four pericentral cells, ecoricate, trichoblasts rare, ultimate branchlets attenuate at the tip but not pungent, and tetrasporangia in long straight series in the ultimate branchlets. The protein-coding plastid *rbcL* gene sequence data show that *P. pacifica* is distinctly different from the superficially similar species, *P. morrowii* and *P. stricta*. However, the *rbcL* sequences of *P. pacifica* var. *pacific* and var. *disticha* are identical though they have morphological variation.

Key Words: Ceramiales, morphology, phylogeny, *Polysiphonia pacifica*, *rbcL*, Rhodophyta, taxonomy

*Corresponding author (myungskim@pusan.ac.kr)
Europe and the Atlantic coast of North America and *P. morrowii* from the northwest Pacific, are closely similar to *P. pacifica* and therefore, their taxonomy is controversial (Hollenberg 1942; Kim et al. 2000).

During our collection trip to USA, we collected two varieties of *Polysiphonia pacifica* in the small harbor in Orcas Island, Washington and Seal Rock, Oregon in June 2003. We here observed morphological structures of two varieties, and then determined the phylogenetic affinities of its component lineages among closely related species. We sequenced the plastid protein-coding *rbcL* gene from selected taxa of *Polysiphonia* and *Neosiphonia*. The *rbcL* region was chosen because it is considered to provide optimal resolution for inferring species level phylogenetic relationships within the Ceramiaceae (Cho et al. 2003; Yang and Boo 2004). The significance of our phylogenetic and morphological observations for the classification of *Polysiphonia pacifica*’s varieties was discussed.

MATERIALS AND METHODS

Morphology

Materials of *Polysiphonia pacifica* were collected at East Sound, Orcas Island, Washington, and Seal Rock, Oregon, USA. The samples were preserved in 4% formaldehyde/seawater for morphological observations. Microscopic observations were made from material stained with 1% aqueous aniline blue acidified with 1% HCl. Photographs were taken through an Olympus microscope (Olympus Optical Co., Tokyo, Japan). Some original materials of *P. pacifica* and varieties were observed on loan from the Smithsonian Institution, National Museum of Natural History, Washington DC (US). Digital images were edited and assembled on plates using Photoshop 5.5. Voucher specimens used in this study were deposited in the herbarium of Chungnam National University (CNUK), Daejon, Korea.

Analysis of the *rbcL* sequence

Algal material, their collection sites, and the GenBank accession numbers of *rbcL* sequence data were listed in Table 1. Samples were sorted under a dissecting microscope, dried in the air, and preserved with silica gel in the field.

Genomic DNA was extracted from approximately 0.005 g of algal powder ground in liquid nitrogen using a DNeasy Plant Mini Kit (Qiagen) or Invisorb Spin Plant Mini Kit (Invitek), according to the manufacturers’ instructions. The *rbcL* region was amplified using primers F7 - R753 and F645 - RrbcS start and sequenced using primers F7, F645, R753, and RrbcS start (Freshwater and Rueness 1994; Lin et al. 2001; Gavio and Fredericq 2002). The PCR products were purified using a High Pure PCR Product Purification Kit (Roche), in accordance with the users’ guide. The sequences of the forward and reverse strands were determined for all taxa using an ABI PRISM™ 377 DNA Sequencer (Applied Biosystems) at Research Center, Chungnam National University, Daejon, Korea. We aligned and reconciled complementary chromatograms using Sequence Navigator v. 1.0.1 (Applied Biosystems). The alignment of gene sequence was based on the alignment of the inferred amino acid sequence and was refined by eye. There were no gaps in our alignments of *rbcL*.

Maximum parsimony (MP) tree have been calculated using PAUP* 4.0b10 (Swofford 2002). Full heuristic search was carried out with 1,000 replicates, random addition sequences of taxa, keeping best trees only, holding 1 trees at each step, tree bisection-reconnection (TBR) branch swapping, collapsed of zero length branches and MULTREES on. Bootstrap values (BtMP) were calculated performing 1,000 replicates with following options selected: heuristic search, TBR branch swapping, collapse of zero length branches, and random sequence addition with one replicate.

Maximum likelihood (ML) analysis was performed using PAUP* with a general time reversible (GTR) model, with proportion of invariable sites. This model of sequences evolution was chosen based on results from Modeltest v3.6 (Posada and Crandall 1998). The Akaike information criterion (AIC) selected GTR + I model as the best-fitting model for the data. Tree likelihoods were estimated using a heuristic search with 100 random addition sequence replicates, and TBR branch swapping. To test the stability of monophyletic groups, bootstrap (BtML) analyses were undertaken with 500 replicates.

Bayesian analysis was conducted with MrBayes v.3.0b4 (Ronquist and Huelsenbeck 2003) GTR + I model as the same in ML analysis. The GTR rates and the proportion of invariable sites value were not fixed. For the data matrix, 1.3 million generations were performed with four chains and trees sampled every 100 generations. The burn-in period can be identified graphically by tracking the likelihoods at each generation. After of preliminary analyses, a burn-in period of 300,000 generations was determined to be appropriate for the data. The 10,000 trees sampled at stationarity were used to infer the Bayesian posterior probability (Bp). Majority-rule
consensus trees were calculated using PAUP*.

RESULTS

Morphology

Type specimens (Figs 1-4)

There are two holotypes of Polysiphonia pacifica var. delicatula and var. distans and two isotypes of P. pacifica and var. determinata in US herbarium.

P. pacifica var. delicatula (#US-61226, Holotype): Eight plants are coated with plastic film (Fig. 1). They are all very small (1 cm), delicate and collected from low tide level on pilings of wharf at Monterey, California, in July 20, 1939 by Hollenberg. This plant looks like very similar to P. atlantica from the Atlantic coast.

P. pacifica var. distans (#US-61228, Holotype): Plant is 12 cm high, dark brownish-red and collected at Carmel Beach, Monterey County, California, in June 22, 1939 by Hollenberg. Plant has inconspicuous prostrate filaments with four pericentral cells and large urceolate cystocarp (Fig. 3). Hollenberg noted in original description that the distinctive features of this variety are the coarse laxly branched filaments, very large cystocarps and tetrasporangia in short series. It looks like a different species from P. pacifica.

P. pacifica var. determinata (#US-61227, Isotype): The specimen only have an upper part of the tetrasporophyte with arranging tetrasporangia in straight series (Fig. 4). Branching is densely and ultimate branchlets are coarse, determinate and dense pencillate tufts (Fig. 2). It is 12 cm high, reddish-black and collected at Pebble Beach, Monterey County, California, in May 1916 by Gardner. It looks like a mature plant of P. morrowii from the northwestern Pacific Ocean.

P. pacifica (#US-066798, Isotype): There are a photo of holotype and a slide (#US-2814). Because there are very small pieces of branch segments, we could not find any good information of the species using the slide.

We have not gotten any kind of the type specimens of P. pacifica var. disticha and var. gracilis.

Polysiphonia pacifica (Figs 5-8)

Plants are 5-7 cm high (Fig. 5). Plants have inconspicuous prostrate filaments attached by unicellular rhizoids, which they are not cut off by cross walls from the lower pericentral cells. Erect branches are ecorticate, with four pericentral cells and little-branched especially below (Fig. 7). Branching patterns are alternate, 100-200 µm in diameter and corymbose at the tips. The ultimate branchlets are attenuating at the tip but without sharply pointed apex (Fig. 6). Trichoblasts and scar-cells are exceedingly rare. Tetrasporangia are 70 µm diameter in long straight series in the ultimate branchlets (Fig. 8). Female and male gametophytes could not collect in this study.

Table 1. Species studied in the present study

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Locality</th>
<th>Voucher</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysiphonia morrowii Harvey</td>
<td>Korea: Gangreung, Anin</td>
<td>P47</td>
<td>AY396030¹</td>
</tr>
<tr>
<td></td>
<td>Korea: Namhaedo, Namhaedaegyo</td>
<td>P173</td>
<td>AY396031¹</td>
</tr>
<tr>
<td></td>
<td>Korea: Susan, Ungdori</td>
<td>P48</td>
<td>AY958161</td>
</tr>
<tr>
<td></td>
<td>Chile: Punta Arenas, Fuerte Bulnes</td>
<td>P176</td>
<td>AY956029³</td>
</tr>
<tr>
<td></td>
<td>Chile: Punta Arenas, Seno Otway</td>
<td>P177</td>
<td>AY956028³</td>
</tr>
<tr>
<td>P. pacifica var. disticha Hollenberg</td>
<td>USA: Oregon, Seal Rock</td>
<td>P193</td>
<td>AY396036¹</td>
</tr>
<tr>
<td></td>
<td>USA: Oregon, Seal Rock 2</td>
<td>P194</td>
<td>AY958162</td>
</tr>
<tr>
<td>P. pacifica var. pacifica Hollenberg</td>
<td>USA: Washington, Orcas Island</td>
<td>P191</td>
<td>AY956035³</td>
</tr>
<tr>
<td>P. stricta (Dillwyn) Greville</td>
<td>England: Yorkshire, Flamborough</td>
<td>P171</td>
<td>AY958167</td>
</tr>
<tr>
<td></td>
<td>Northern Ireland: Moyle, Cushendun</td>
<td>P195</td>
<td>AY958163</td>
</tr>
<tr>
<td></td>
<td>Northern Ireland: Larne, Garron</td>
<td>P196</td>
<td>AY958164</td>
</tr>
<tr>
<td></td>
<td>Northern Ireland: Larne, Garron Pt.</td>
<td>P198</td>
<td>AY958165</td>
</tr>
<tr>
<td></td>
<td>Norway: Møre og Romsdal, Finnøy</td>
<td>P421</td>
<td>AY958166</td>
</tr>
<tr>
<td>Polysiphonia sp.</td>
<td>Japan: Hokkaido, Oshoro</td>
<td>P77</td>
<td>AY958168</td>
</tr>
<tr>
<td></td>
<td>Japan: Hokkaido, Denshinhama</td>
<td>P70</td>
<td>AY958169</td>
</tr>
<tr>
<td>Neosiphonia harveyi (Bailey) M.S. Kim et al.</td>
<td>-</td>
<td>-</td>
<td>AF342900²</td>
</tr>
<tr>
<td>N. japonica (Harvey) M.S. Kim et I.K. Lee</td>
<td>-</td>
<td>-</td>
<td>AF342902²</td>
</tr>
<tr>
<td>Chondria californica (Collins) Kylin</td>
<td>-</td>
<td>-</td>
<td>AY172578³</td>
</tr>
<tr>
<td>Laurencia natalensis Kylin</td>
<td>-</td>
<td>-</td>
<td>AF465816⁴</td>
</tr>
</tbody>
</table>

Plants are growing on wood in the littoral zone at the small harbor of East Sound, Orcas Island, Washington, USA.

Polysiphonia pacifica var. *disticha* (Figs 9-12)

Plants are 2-3 cm high, ecoricate with four pericentral cells and attached by rhizoids at the rocks (Fig. 9). The pattern of branches is spirally arranged in alternating...
pairs every 2-3 segments throughout the length of all branches (Fig. 10). The ultimate branchlets are determinate, incurved and attenuate at the tip but not pungent (Fig. 11). Trichoblasts are absent. Tetrasporangia are 60 µm diameter in long straight series (Fig. 12). Female and male gametophytes could not collect in this study. Plants are occurring mostly in the upper littoral zone in exposed place, Seal Rock, Oregon, USA.

Phylogeny of plastid protein-coding rbcL gene

The 1401 nucleotides (95.5% of full length, 1467 nt) of nine *Polysiphonia rbcL* were newly determined and ten of those were downloaded from GenBank. In all, nineteen *rbcL* sequences were aligned including two outgroups,
Chondria californica and Laurencia natalensis; 1074 positions were constant, 327 positions (23.3%) were variable and 230 positions (16.4%) were parsimony informative. Base composition of the gene was slightly AT-biased (63.3%). Transitions were more abounded than transversion (Ti/Tv ratio = 2.84).

Three vouchers belonging to Polysiphonia pacifica show identical rbcL sequences. Whereas, each populations of P. morrowii and P. stricta have a few sequence differences. The rbcL sequences from the five samples of P. morrowii differed by 1 nucleotides (average p distance = 0.03%) and five of P. stricta differed by from 0 to 3 nucleotides (average p distance = 0.1%). Pairwise sequence divergence comparison among three Polysiphonia species

Figs 9-12. Polysiphonia pacifica var. disticha Hollenberg collected at Seal Rock, Oregon, USA. Fig. 9. Habit of thalli occurring in the upper littoral zone in exposed places. Scale bar = 1 cm Fig. 10. Branch having corymbose at the tips and domed apical cells (arrowheads). Fig. 11. Branching showing pseudodichotomous to alternate. Fig. 12. Habit of tetrasporangia plants in straight arrangement (arrowheads).
ranged from 3.17% between *P. pacifica* and *P. morrowii* to 2.6% between *P. pacifica* and *P. stricta*. *Neosiphonia japonica* differed from *P. stricta* by 174 nucleotides or 14% sequence divergence.

Three rbcL trees constructed using MP, ML and Bayesian analyses showed identical topology (Fig. 13). The closest relationship of *P. pacifica* and *P. stricta* was supported by relatively strong BtMP (83%) and Bp (0.96), despite its decline in BtML (60%). The monophyly of *P. pacifica* and that of *P. stricta* were supported by maximum support values (100% for BtML and BtMP and 1.0 Bp), respectively. The monophyly of *P. morrowii* was supported by strong support values (97% for BtML, 99% for BtMP, and 1.0 for Bp). *Polysiphonia* sp. from Oshoro and Denshinhama, Japan was a sister of *P. pacifica*/*P. stricta* clade and supported (63% for BtML, 71% for BtMP, and 0.97 Bp). The genus *Polysiphonia* produced a strong supported clade (99% for BtML and maximum for the BtMP and Bp).
DISCUSSION

Polysiphonia pacifica is closely related with P. morrowii from northwest Pacific and P. stricta (as P. urceolata) common in Europe and along the Atlantic coast of North America. They are all characterized by the following features: (i) rhizoid does not cut off by cross walls from the pericentral cells; (ii) antheridal branch arises from the entire trichoblast primordium; (iii) trichoblasts are scarce or lacking; and (iv) tetrasmusoria are arranged in straight series on determinate branchlets. Although they are superficially very similar to P. pacifica, but differs in several ways. The sterile tip of spermatangial branch is generally much shorter (1-3) in P. pacifica, while P. stricta and P. morrowii are having 2-5 and 5-8 sterile tip of spermatangial branch, respectively (Hollenberg 1942; Kim et al. 1994, 2000). P. pacifica also is in general somewhat more robust, variable plant and trichoblasts are rare than P. stricta (Hollenberg 1942). In addition P. pacifica is different from P. morrowii in lacking sharply pointed apex of ultimate branchlets and the axillary adventitious endogenous branchlets (Kudo and Masuda 1992).

This is the first document to report morphology and phylogeny of Polysiphonia pacifica since its original description by Hollenberg (1942). We collected two varieties of the species, P. pacifica, during our collection trip to Washington and Oregon, USA. One material used in this study is from the small harbor of East Sound, Orcas Islands, where is the type locality of this study is from the small harbor of East Sound, Orcas Island, in July 1910. The plant collected by us, however, was growing on the wood of harbor in littoral zone. We identified this plant as P. pacifica, however, was growing on the wood of harbor in lit-

To confirm the specific entity, we borrowed some original materials of P. pacifica from the Smithsonian Institution, National Museum of Natural History, Washington DC (US). We investigated two holotypes of Polysiphonia pacifica var. delicatula and var. distans and two isotypes of P. pacifica var. pacifica and var. determinata. As a result of the observations of type specimens, Polysiphonia pacifica var. delicatula and var. distans look like different species from P. pacifica. And P. pacifica var. determinata could also be a mature plant of the different species, P. morrowii. But we have not gotten any type specimens of P. pacifica var. disticha and var. gracilis.

It is expected that protein-coding rbCL sequences were identical between two varieties’s specimens of P. pacifica from different locations in USA. Although two varieties of P. pacifica was described by Hollenberg based on some different morphological features, they are exactly same in the rbCL. The distinctness of P. pacifica is strongly supported by phylogenetic analyses inferred from rbCL sequences. Our molecular data reveals two distinct clades; one is containing P. pacifica from USA, Polysiphonia sp. from Japan, northwest Pacific and P. stricta from England, the other grouping is P. morrowii from Korea, the Pacific Ocean and the introduced sample to Chile forming a very distinct group with little genetic variation. Atlantic P. stricta forms a distinct lineage that is a sister relationship to P. pacifica. It is sufficient sequence divergence between P. pacifica and similarly looking species, P. stricta and P. morrowii.

In summary, Polysiphonia pacifica is the typical species, having prostrate filaments attached by unicellular rhi-

rigid determinate branchlets and its main axes usually covered with determinate branchlets, 3) P. pacifica var. determinata has long naked portions below of main axes and branching usually dense, 4) P. pacifica var. gracilis is distinguished by its slender laxly branched habit and main axes are distinct to the tips which are usually not exceeded by the upper branchlets, 5) P. pacifica var. distans has indeterminate ultimate branchlets, the coarse laxly branched filaments, very large cystocarps, and tetrasmusoria in short series.

However, the rbCL sequences of P. pacifica, var. pacifica
and var. disticha are identical though they have morpho-
logical variation.

ACKNOWLEDGEMENTS

We are very grateful to Dr James Norris for loans from
the National Museum Herbarium, Smithsonian
Institution (US); to Professor Sung Min Boo (Chungnam
National University) for supporting; and to Miss Ga
Youn Cho for help with the collection of samples. This
work was supported by a Korea Research Foundation
Grant to M.S. Kim (KRF-2002-070-C00083) and to E.C.
Yang (KRF-2002-070-C00083).

LITERATURE CITED

Museum Press, Honolulu. xv + 477 pp, 133 figs.
Stanford University Press, Stanford. xii (xiii) + 827 pp. 701
figs.
Phylogenetic relationships of Polysiphonia (Rhodomelaceae,
Gavio B. and Fredericq S. 2002. Grateloupia turuturu
(Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. Eur. J. Phycol. 37: 349-359.
Hansen G.I. 1997. A revised checklist and preliminary assess-
Hollenberg G.J. 1942. An account of the species of Polysiphonia
nov. with a taxonomic reassessment of the genus
Polysiphonia (Rhodomelaceae, Rhodophyta). Phycol. Res. 47:
271-281.
Kim M.S., Lee I.K. and Boo S.M. 1994. Morphological studies of
the red alga Polysiphonia morrowii Harvey on the Korean
Kudo T. and Masuda M. 1992. Taxonomic features of
McIvor L., Maggs C.A., Provan J. and Stanhope M.J. 2001. RbcL
McIvor L., Maggs C.A., Guiry M.D. and Hommersand M.H.
2002. Phylogenetic analysis of the geographically disjunct
species Constancea/83/mcivor_etal/osmundea.html
Yang E.C. and Boo S.M. 2004. Evidence for two independent

Received 14 March 2005
Accepted 24 March 2005