Feeding by common heterotrophic protists on the phototrophic dinoflagellate *Biecheleriopsis adriatica* (Suessiaceae) compared to that of other suessioid dinoflagellates

Hee Chang Kang¹, Hae Jin Jeong¹,² *, Se Hyeon Jang¹ and Kyung Ha Lee¹

¹School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
²Advanced Institutes of Convergence Technology, Suwon 16229, Korea

The species in the dinoflagellate order Suessiales have 5-24 latitudinal paraplate series and include many fossil and extant species. There have been a few studies on the ecophysiology of the phototrophic species *Biecheleriopsis adriatica*, and no study on its predators. Thus, we explored the feeding occurrence by common heterotrophic protists on *B. adriatica* and the growth and ingestion rates of the heterotrophic dinoflagellate *Oxyrrhis marina* on *B. adriatica* BATY06 as a function of prey concentration. The common heterotrophic dinoflagellates *Aduncodinium glandula*, *O. marina*, *Gyrodotium dominans*, *Gyrodinium moestrupii*, *Luciella masanensis*, *Pfiesteria piscicida*, and *Oblea rotunda* and two naked ciliates *Strombidinopsis* sp. and *Pelagostrobilidium* sp. were able to feed on *B. adriatica*, but the heterotrophic dinoflagellate *Polykrikos kofoidii* was not. However, *B. adriatica* supported the positive growth of *O. marina*, but did not support that of *G. dominans* and *O. rotunda*. With increasing prey concentrations, the growth and ingestion rates of *O. marina* on *B. adriatica* increased and became saturated. The maximum growth rate of *O. marina* on *B. adriatica* was 0.162 d⁻¹. Furthermore, the maximum ingestion rate of *O. marina* on *B. adriatica* was 0.2 ng C predator⁻¹ d⁻¹ (2.0 cells predator⁻¹ d⁻¹). In the order Suessiales, the feeding occurrence by common heterotrophic protists on *B. adriatica* is similar to that on *Effrenium voratum* and *Biecheleria cincta*, but different from that on *Yihiella yeosuensis*. However, the growth and ingestion rates of *O. marina* on *B. adriatica* are considerably lower than those on *E. voratum* and *B. cincta*, but higher than those on *Y. yeosuensis*. Therefore, *B. adriatica* may be less preferred prey for *O. marina* than *E. voratum* and *B. cincta*, but more preferred prey than *Y. yeosuensis*.

Key Words: ciliate; food web; heterotrophic dinoflagellate; predation; protist; Suessiales

INTRODUCTION

Dinoflagellates are ubiquitous and a major component of marine ecosystems (Lessard 1984, Jeong 1999, Lim et al. 2017b). They have diverse trophic modes, such as exclusively autotrophic, mixotrophic, and heterotrophic (Stoecker 1999, Jeong et al. 2010). Due to their trophic mode diversity, they can play diverse roles in marine planktonic food webs as primary producers, predators on diverse prey items (including bacteria, microalgae, and metazoans), and prey for heterotrophic protists and metazoans (Coats 1999, Tillmann 2004, Hansen 2011, Johnson 2015, Stoecker et al. 2017). Therefore, dinoflagellates are largely involved in the cycling of materials and
energy flow in marine ecosystems (Eppley et al. 1973, Carlsson et al. 1999, Calbet and Landry 2004). Many dinoflagellates species are known to form red tides or harmful algal blooms (HABs), which often cause the large-scale mortality of marine organisms and subsequently great economic loss in diverse industries (Adolf et al. 2015, Menden-Deuer and Montalbano 2015). Thus, to preserve marine organisms and also reduce the economic losses due to red tides or HABs caused by a dinoflagellate, the population dynamics of the dinoflagellate should be well understood. In population dynamics models, the growth and mortality rates of the dinoflagellate are two critical parameters (Jeong et al. 2015). Thus, to understand the roles of a dinoflagellate in marine ecosystems, interactions between the dinoflagellate species and other related organisms (as a potential prey or predator) should be well documented.

Species in the dinoflagellate order Suessiales are known as dinoflagellates, whose cell surface is covered with many thin plates (Lindberg et al. 2005). There are many species in this order (Algaebase, http://www.algaebase.org). However, compared to species in other orders, such as Peridiniales, Gonyaulacales, and Gymnodini-ales, there have been fewer species whose predators and mortality rates are reported (Jeong et al. 1997, 2010, Kang et al. 2018). In the order Suessiales, the predators and mortality rates of Effrenium (Symbiodinium) voratum, Biecheleria cincta, Protodinium simplex, and Yihella yeosuensis have been reported (Strom and Morello 1998, Montagnes and Lessard 1999, Yoo et al. 2013c, Jeong et al. 2014, 2018a). Biecheleriopsis adriatica was reported as a new genus and species of the order Suessiales in 2009 (Moestrup et al. 2009). This species is characterized from other groups of woloszynskioid dinoflagellates by having a nuclear fibrous connective, and a distinct tongue-like process in the left ventral corner of the asymmetric hypo- some (Moestrup et al. 2009, Jang et al. 2015). The vegetative cells of B. adriatica were widely distributed in Korean waters (Kang et al. 2019). To understand its ecological roles in marine food webs, its predators and mortality rates should be explored.

Heterotrophic protists are also a major component of marine ecosystems (Sherr and Sherr 2002, Jeong et al. 2010, Lim et al. 2017b). Their grazing impact on phytoplankton populations are usually greater than that of metazoans because the abundance of heterotrophic protist predators is much greater than that of metazoan predators (Turner and Borkman 2005, Lim et al. 2017b). Heterotrophic dinoflagellates (HTDs) and ciliates are major heterotrophic protist groups (Jeong et al. 1999, Levinsen and Nielsen 2002). They are often effective predators of phototrophic dinoflagellates and sometimes control prey populations (Jeong et al. 2003, Lim et al. 2017a). Aduncodinium glandula, Gyrodinium dominans, Gyrodinium moestruipii, Luciella masanensis, Oblea rotunda, Oxyrhis marina, Polykrikos kofoidii, and Pfiesteria piscicida are common HTDs and Pelagostrobilidium sp. and Strombidinopsis sp. are also common naked ciliates in many marine environments (Strom and Buskey 1993, Claessens et al. 2008, Taylor et al. 2008, Watts et al. 2010, Calbet et al. 2013, Tillmann and Hoppenrath 2013, Yoo et al. 2013b). There are usually large variations in feeding occurrence and growth and ingestion rates of heterotrophic protist predator species when diverse prey species are provided (Hansen 1992, Menden-Deuer et al. 2005, Jeong et al. 2018a, 2018b, Kang et al. 2018). Thus, it is worthwhile to explore the interactions between B. adriatica and these potential heterotrophic protist predators.

In the present study, we investigated the types of predators that are able to feed on a Korean strain of B. adriatica. Furthermore, the growth and ingestion rates of O. marina on B. adriatica were measured as a function of prey concentration. The growth and ingestion rates were compared to the rates of the same predator on different species in the order Suessiales. The results of this study provide a basis for understanding the interactions between B. adriatica and common heterotrophic protists, and their ecological roles in the marine planktonic community.

MATERIALS AND METHODS

Preparation of experimental organisms

Cells of B. adriatica were isolated from plankton samples that were collected from surface waters off the coast of Tongyoung, Korea using plankton samplers in August 2006, when the water temperature and salinity were 28.0°C and 31.0, respectively (Table 1). The collected samples were screened softly by using a 154-µm Nitex mesh. The clonal culture of B. adriatica BATY06 was established using two consecutive single-cell isolations (Jang et al. 2015). When the B. adriatica concentration had increased sufficiently, the volume of the bottles increased to 32, 270, and 500-ML PC bottles containing fresh f/2 medium. The bottles were placed on a shelf at 20°C, illuminated with an irradiance of 20 µmol photons m⁻² s⁻¹ provided by cool white fluorescent lights, under a 14 : 10 h light : dark cycle. Only cultures in the exponen-
tial growth phase were used.

The HTDs *A. glandula*, *G. dominans*, *G. moestrupii*, *L. masanensis*, *O. rotunda*, *O. marina*, and *P. kofoidii*, isolated from plankton samples collected from the coastal waters off Masan, Shiwha, Saemankeum, Jinhae, and Jangheung in 2007-2016 were used in this study (Table 1). A clonal culture of each HTD species was established using two consecutive single-cell isolations, except for that of *P. piscicida*, which was obtained from the National Center for Marine Algae and Microbiota (NCMA), USA. The naked ciliates *Pelagostrobilidium* sp. and *Strombidinopsis* sp. were isolated from plankton samples, collected using 20- and 10-μm mesh nets from the coastal waters off Tongyoung and Yeosu in August 2017 and July 2018, respectively (Table 1). A clonal culture for each of *Pelagostrobilidium* sp. and *Strombidinopsis* sp. was also established using two serial single-cell isolations.

The carbon content of *B. adriatica* BATY06 (0.1 ng C per cell) was estimated from the cell volume, according to the equation suggested by Menden-Deuer and Lessard (2000). Furthermore, the carbon contents of all predator species used in the present study were also estimated from the cell volume as described above. The cell volumes of the HTD predators were estimated using the methods of Jang et al. (2016) for *A. glandula*; Kim and Jeong (2004) and Yoo et al. (2013b) for *G. dominans* and *G. moestrupii*, respectively; Jeong et al. (2007) for *L. masanensis* and *P. piscicida*; Ok et al. (2017) for *O. rotunda*; Jeong et al. (2008b) for *O. marina*; Jeong et al. (2001b) for *P. kofoidii*; Kim et al. (2019) for *Strombidinopsis* sp.; and Jeong et al. (2018b) for *Pelagostrobilidium* sp. (Table 1).

Interactions between *Biecheleriopsis adriatica* and heterotrophic protists

Experiment (Expt) 1 was designed to investigate feeding by each of the HTDs and ciliates on *B. adriatica* BATY06, after mixing *B. adriatica* with potential predator species (Table 2). In this experiment, whether the target heterotrophic protist was able to feed on *B. adriatica* and/or other interactions were observed.

Dense cultures of *B. adriatica* (ca. 40,000 cells mL⁻¹) and each of the HTDs and ciliates were added to each 42-mL PC bottle (Table 2). For each experiment, one experiment (with prey and predator), one prey control (without predator), and one predator control (without prey) bot-

| Table 1. Conditions for the isolation and maintenance of the experimental organisms |
|---------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| **Organisms** (strain name) | **Type** | **FM** | **CV** | **Location** | **Time** | **T** | **S** | **Prey species for maintenance** | **Feeding of Ba** |
| Predators | | | | | | | | | |
| *Aduncodinium glandula* (AGMS1303) | HTD | PD | 4.8 | Masan, Korea | Mar 2013 | 8.1 | 30.3 | As | Y |
| *Gyrodnium dominans* (GDMS90907) | HTD | EG | 4.2 | Masan, Korea | Apr 2007 | 15.1 | 33.4 | Ac | Y |
| *Gyrodnium moestrupii* (GMSK0910) | HTD | EG | 3.3 | Saemankeum, Korea | Oct 2009 | 21.2 | 31.0 | Am | Y |
| *Luciella masanensis* (LMJH1607) | HTD | PD | 1.3 | Jinhae, Korea | Jul 2016 | 22.6 | 30.7 | Api | Y |
| *Oblea rotunda* (ORJH1504) | HTD | PA | 5.3 | Jinhae, Korea | Apr 2015 | 12.6 | 31.2 | Ac | Y |
| *Oxyrrhis marina* (OMSH08111) | HTD | EG | 2.0 | Shiwha, Korea | Nov 2008 | 16.8 | 27.0 | Ac | Y |
| *Polykrikos kofoidii* (PKJH1607) | HTD | EG | 43.1 | Jangheung, Korea | Jul 2016 | 23.6 | 26.4 | Sa | N |
| *Pfiesteria piscicida* (CCMP2091) | HTD | PD | 1.3 | Neuse River, USA | Jan 1998 | - | - | Ac | Y |
| *Pelagostrobilidium sp.* (PSY1708) | NC | FF | 25.1 | Tongyoung, Korea | Aug 2017 | 27.2 | 31.5 | Pc | Y |
| *Strombidinopsis sp.* (SSYS1807) | NC | FF | 383.0 | Yeosu, Korea | Jul 2018 | 27.5 | 32.4 | Kt | Y |
| Prey | ATD | - | 0.5 | Tongyoung, Korea | Aug 2006 | 28.0 | 31.0 | - | - |

FM, feeding mechanism; CV, cell volume (×10^7 μm^3); T, temperature (°C); S, salinity; Ba, *Biecheleriopsis adriatica*; HTD, heterotrophic dinoflagellate; NC, naked ciliate; ATD, autotrophic dinoflagellate; PD, peduncle feeder; EG, engulfment feeder; PA, palillum feeder; FF, filter feeder; As, *Akashiwo sanguinea*; Ac, *Amphidinium carterae*; Am, *Alexandrium minutum*; Api, *Apistonema sp.*; Sa, *Scripsiella acuminata*; Pc, *Prorocentrum cordatum*; Kt, *Kryptoperidinium triquetrum*; Y, feeding; N, no feeding; -, not available.
Dense cultures of *O. marina* grown with *Amphidinium carterae* as prey were transferred into 250-mL PC bottles when cells of *A. carterae* were not detectable for 24 h. The bottles were filled to capacity with freshly filtered seawater, capped, placed on a plankton wheel rotating at 0.00017 g (0.9 rpm), and incubated at 20°C under an illumination of 20 µmol photons m⁻² s⁻¹ and a 14 : 10 h light : dark cycle. This was done to minimize the possible residual growth resulting from the ingestion of prey during the batch culture. After one day, the cells in three 1 mL aliquots from each bottle were counted using a compound microscope to determine the concentration of predator cells, and the cultures were used in further experiments.

The initial concentrations of *O. marina* and *B. adriatica* were established in eight different combinations. Triplicate 42-mL PC experimental bottles (mixtures of predator and prey) and triplicate control bottles (prey only) were set up at each predator–prey combination. In addition, triplicate control bottles (predator only) were established at a single predator concentration. Predetermined volumes of *O. marina* and *B. adriatica* were added into each bottle using an autopipette. To obtain similar water conditions, the water of the predator culture was filtered through a 0.7-µm GF/F filter, and then added to the prey control bottles in the same amount as the volume of the predator culture added into the experimental bottles. Similarly, the water of the prey culture was filtered through a 0.7-µm GF/F filter and then added to the predator control bottles in the same amount as the volume of the prey culture added into the experimental bottles. To all the bottles were set up. The bottles for the *A. glandula* predator were placed on a shelf, but the bottles for the rest of the predators were placed on a rotating wheel at 0.00017 g (0.9 rpm). All bottles were incubated at 20°C, under an illumination of 20 µmol photons m⁻² s⁻¹ and a 14 : 10 h light : dark cycle.

After 2, 24, and 48 h of incubation, 3 mL aliquots were taken from each bottle and transferred into the wells of 6-well plate chambers. More than 30 cells of each predator in one plate chamber were tracked for 2 min under a dissecting microscope at 20-63× magnification to determine whether the predator was able to feed on *B. adriatica*. The cells of predators having ingested cells of *B. adriatica* in their body were photographed on slides with cover-glasses at a 200-400× magnification using a digital camera (Zeiss-AxioCam MRc5; Carl Zeiss Ltd., Göttingen, Germany) attached to an inverted light microscope (Zeiss-Axiovert 200 M; Carl Zeiss Ltd.). The feeding process of each of these heterotrophic protists on *B. adriatica* was recorded using a video analyzing system (Sony DXC-C33; Sony Co., Tokyo, Japan) and captured using the digital camera.

Growth and ingestion rates of *Oxyrrhis marina* feeding on *Biecheleriopsis adriatica* as a function of prey concentration

Expt 2 was designed to measure the growth and ingestion rates of *O. marina* feeding on *B. adriatica* BATY06 as a function of prey concentration (Table 2). In preliminary tests, *B. adriatica* BATY06 supported the positive growth of *O. marina*, but did not support the positive growth of *G. dominans*, *O. rotunda*, and *Strombidinopsis* sp. Whether *B. adriatica* supports the positive growth of *A. glandula*, *P. piscicida*, and *L. masanensis* was not tested because these dinoflagellates were not distinguishable from *B. adriatica* when fixed with Lugol’s solution and formalin.

<table>
<thead>
<tr>
<th>Table 2. Experimental design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt. No.</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

The numbers in the prey and predator columns are the initial densities (cells mL⁻¹) of the prey and predator. The predator density in the control bottle is in parentheses.
bottles, 5 mL of f/2 medium was added to provide sufficient nutrients to *B. adriatica* grown autotrophically, and then filled to capacity with freshly filtered seawater and capped. To determine the actual initial predator and prey densities at the beginning of the experiment, a 5 mL aliquot was sampled from each bottle, fixed with 5% Lugol’s solution, and enumerated in three 1-mL Sedgewick Rafter chambers (SRCs). The bottles were then refilled to capacity with freshly filtered seawater, capped, and placed on rotating wheels at 0.00017 g under the conditions described above. Dilution of the cultures from the refilling of bottles was considered when calculating the growth and ingestion rates. A 10 mL aliquot was taken from each bottle at 48 h and fixed with 5% Lugol’s solution, and the abundances of predators and prey were then determined by counting all or >200 cells in three 1-mL SRCs.

The specific growth rate of a heterotrophic protist predator, μ (d$^{-1}$) was calculated according to following formula:

$$\mu (d^{-1}) = \frac{[\ln (P_t / P_0)]}{t}$$

where P_0 and P_t = the concentrations of the predator at 0 and 2 d.

Data for *O. marina* growth rates were fitted to a modified Michaelis–Menten equation:

$$\mu (d^{-1}) = \mu_{\text{max}} \frac{(x - x')}{[K_{\text{GR}} + (x - x')]},$$

where μ_{max} = the maximum growth rate (d$^{-1}$); x = prey concentration (cells mL$^{-1}$ or ng C mL$^{-1}$), x' = threshold of prey concentration (where the prey concentration $\mu = 0$), and K_{GR} = the prey concentration sustaining 1/2 μ_{max}.

Data were iteratively fitted to the model using DeltaGraph (Red Rock Software Inc., Salt Lake, UT, USA).

The ingestion rate and mean prey concentration were calculated using the equations of Frost (1972) and Heinbokel (1978), respectively. The incubation time for calculating ingestion was the same as that for estimat-
Interactions between *Biecheleriopsis adriatica* and heterotrophic protists

The HTDs *A. glandula*, *O. marina*, *G. dominans*, *G. moestrupii*, *L. masanensis*, *P. piscicida*, and *O. rotunda* and the ciliates *Strombidinopsis* sp. and *Pelagostrobilidium* sp. were able to feed on *B. adriatica* BATY06, but the HTD *P. kofoidii* was not (Table 1, Fig. 1). Cells of *O.*

RESULTS

Interactions between *Biecheleriopsis adriatica* and heterotrophic protists

The HTDs *A. glandula*, *O. marina*, *G. dominans*, *G. moestrupii*, *L. masanensis*, *P. piscicida*, and *O. rotunda* and the ciliates *Strombidinopsis* sp. and *Pelagostrobilidium* sp. were able to feed on *B. adriatica* BATY06, but the HTD *P. kofoidii* was not (Table 1, Fig. 1). Cells of *O.*
With increasing mean prey concentrations, the ingestion rate of *O. marina* feeding on *B. adriatica* increased at *B. adriatica* concentrations <493 ng C mL\(^{-1}\) (4,930 cells mL\(^{-1}\)), but became almost saturated at higher mean prey concentrations (Fig. 4). The highest ingestion rate was 0.35 ng C predator\(^{-1}\) d\(^{-1}\) (3.5 cells predator\(^{-1}\) d\(^{-1}\)). However, when the data were fitted to Eq. (3), the calculated maximum ingestion rate (\(I_{\text{max}}\)) of *O. marina* on *B. adriatica* was 0.2 ng C predator\(^{-1}\) d\(^{-1}\) (2.0 cells predator\(^{-1}\) d\(^{-1}\)).

DISCUSSION

Prior to the present study, among the species belonging to the order Suessiales, only a few have been tested regarding whether common heterotrophic protist predators are able to feed on the prey species or not. The results of the present study clearly showed that among the common heterotrophic protist predators tested, all of the predators except for *P. kofoidii* were able to feed on *B. adriatica*. The minimum prey size that *P. kofoidii* is able to feed on is known to be approximately 10 µm (Jeong et al. 2001b). The average size of *B. adriatica* tested in this study was 10.1 µm. Thus, the small size of *B. adriatica* may be partially responsible for it not being fed upon by *P. kofoidii*, which deploys the nematocyst–taeniocyst complex to anchor prey cells.

O. marina engulfed whole *B. adriatica* cells (Fig. 2A-F). The time for a *B. adriatica* cell to be completely engulfed by *O. marina* was ca. 40-50 s. Meanwhile, *A. glandula* deployed the peduncle to the body of *B. adriatica* and then sucked the body materials of *B. adriatica* (Fig. 2G-L). The *A. glandula* sometimes left some residual materials of the *B. adriatica* body. The time for a *B. adriatica* cell to be ingested by *A. glandula* was ca. 120-180 s (Fig. 2G-L).

Growth and ingestion rates of *Oxyrrhis marina* feeding on *Biecheleriopsis adriatica* as a function of prey concentration

With increasing mean prey concentrations, the ingestion rate of *O. marina* feeding on *B. adriatica* increased at *B. adriatica* concentrations <493 ng C mL\(^{-1}\) (4,930 cells mL\(^{-1}\)), but became almost saturated at higher mean prey concentrations (Fig. 4). The highest ingestion rate was 0.35 ng C predator\(^{-1}\) d\(^{-1}\) (3.5 cells predator\(^{-1}\) d\(^{-1}\)). However, when the data were fitted to Eq. (3), the calculated maximum ingestion rate (\(I_{\text{max}}\)) of *O. marina* on *B. adriatica* was 0.2 ng C predator\(^{-1}\) d\(^{-1}\) (2.0 cells predator\(^{-1}\) d\(^{-1}\)).
on *B. adriatica* were identical or very similar to *E. voratum* and *B. cincta*, but largely different from *Y. yeosuensis*, which only *O. marina*, *A. glandula*, and *Strombidinopsis* sp. were able to feed on (Table 3). Thus, *B. adriatica* is vulnerable to common heterotrophic protist predators as much as *E. voratum* and *B. cincta*; however, it is more vulnerable than *Y. yeosuensis*. Furthermore, the μ_{max} and I_{max} of *O. marina* on *B. adriatica* was lower than those of *E. voratum* and *B. cincta*, but greater than those of *Y. yeosuensis* (Table 4). Thus, it is expected that in marine environments, *O. marina* is less abundant when *B. adriatica* is abundant than when *E. voratum* or *B. cincta* is abundant, but more abundant than when *Y. yeosuensis* prey is abundant. Meanwhile, either the μ_{max} or I_{max} of *O. marina* feeding on *B. adriatica*, *B. cincta*, *E. voratum*, and *Y. yeosuensis* was not significantly related to the size of the prey species (Fig. 5A & B). Thus, factors other than prey size may affect the μ_{max} or I_{max} of *O. marina*. The maximum swimming speeds of *B. adriatica* and *Y. yeosuensis* were much greater than those of *B. cincta* and *E. voratum* (Table 4). Furthermore, *B. adriatica* and *Y. yeosuensis* jump backward when a predator attacks, whereas *B. cincta* and *E. voratum* do not jump (Kang et al. 2011, Yoo et al. 2013c, Jeong et al. 2014, 2018a, Jang et al. 2015, 2017, personal observation). Thus, the much higher maximum swimming speeds and jumping behaviors of *B. adriatica* and *Y. yeosuensis* may be partially responsible for the lower μ_{max} or I_{max} of *O. marina* on these prey species compared to those on *B. cincta* and *E. voratum*. The μ_{max} of *O. marina* feeding on *B. adriatica*, *B. cincta*, *E. voratum*, and *Y. yeosuensis* was also not significantly related to I_{max} (Fig. 5C). Thus, the gross growth efficiencies (GGEs) of *O. marina* on these four dinoflagellate prey species are different (Table 4). The GGE of *O. marina* on *B. adriatica* (18%) is lower than that on *B. cincta* (27%), but higher than that on *E. voratum* (10%) or *Y. yeosuensis* (0%). Thus, the GGEs of *O. marina* on these suessioid dinoflagellate prey species are wide.

When the μ_{max} and I_{max} of *O. marina* on *B. adriatica*.

Table 3. Feeding occurrence of heterotrophic protists on four species in the order Suessiales

<table>
<thead>
<tr>
<th>Prey / Predators</th>
<th>ESD (µm)</th>
<th>Om</th>
<th>Gd</th>
<th>Gm</th>
<th>Pk</th>
<th>Pp</th>
<th>Lm</th>
<th>Ag</th>
<th>Or</th>
<th>NC</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yihiella yeosuensis</td>
<td>8.0</td>
<td>o</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>o</td>
<td>x</td>
<td>o</td>
<td>Jeong et al. (2018a)</td>
</tr>
<tr>
<td>Biecheleriopsis adriatica</td>
<td>10.1</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>This study</td>
</tr>
<tr>
<td>Effrenium voratum</td>
<td>11.1</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>Jeong et al. (2014), this study</td>
</tr>
<tr>
<td>Biecheleria cincta</td>
<td>12.2</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>Yoo et al. (2013c), this study</td>
</tr>
</tbody>
</table>

ESD, equivalent spherical diameter (µm); Om, *Oxyrhis marina*; Gd, *Gyrodinium dominans*; Gm, *Gyrodinium moestrupii*; Pk, *Polykrikos kofoidii*; Pp, *Pfiesteria piscicida*; Lm, *Luciella masanensis*; Ag, *Aduncodinium glandula*; Or, *Oblea rotunda*; NC, naked ciliates.

Fig. 5. Maximum growth (MGR) and ingestion (MIR) rates of *Oxyrhis marina* predators on the suessioid dinoflagellate prey species. (A) MGR as a function of equivalent spherical diameter (ESD, µm). (B) MIR as a function of ESD. (C) MGR as a function of MIR. The numbers in parentheses are gross growth efficiencies. *Ba*, *Biecheleriopsis adriatica*; *Bc*, *Biecheleria cincta*; *Ev*, *Effrenium voratum*; *Yy*, *Yihiella yeosuensis*.

https://doi.org/10.4490/algae.2019.34.5.29
BATY06 were compared with those on the dinoflagellate species belonging to the other orders, the μ_{max} of *O. marina* on *B. adriatica* were higher than that on the HTD *L. masanensis* and the mixotrophic dinoflagellates *Paragymnodinium smaydae* and *Takayama helix*, but lower than that on many species belonging to other orders, such as Amphidiniales, Gymnodiniales, Thoracosphaerales, Chlamydomonadales, Isochrysidales, Chattonellales, and Eutreptiales (Table 5). Therefore, *B. adriatica* may not be preferred prey for *O. marina*.

Vegetative cells of *B. adriatica* was present in the waters of 20 stations when surface water samples were collected from 28 stations along the Korean Peninsula and Jeju Island from April 2015 to October 2018 (Kang et al. 2019). However, the maximum abundance of *B. adriatica* in that study was 41.7 cells mL$^{-1}$ (4.2 ng C mL$^{-1}$), which is lower than the threshold prey concentration for the growth of *O. marina* feeding on *B. adriatica* (729 cells mL$^{-1}$, 72.9 ng C mL$^{-1}$) obtained in the present study. Furthermore, the highest reported abundance of *B. adriatica* in the world’s oceans was 305 cells mL$^{-1}$ (30.5 ng C mL$^{-1}$), which was obtained from Bolinao in the Philippines (Benico et al. 2001).

Table 4. Maximum growth rate (μ_{max}, d$^{-1}$), maximum ingestion rate (I_{max}, ng C predator$^{-1}$ d$^{-1}$), and gross growth efficiencies (GGE, %) of *Oxyrrhis marina* on the species in the order Suessiales

<table>
<thead>
<tr>
<th>Prey order / Species</th>
<th>ESD</th>
<th>MSS</th>
<th>μ_{max}</th>
<th>I_{max}</th>
<th>GGE</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yihiella yeosuensis</td>
<td>8.0</td>
<td>1,572</td>
<td>0</td>
<td>0.07</td>
<td>0</td>
<td>Jang et al. (2017), Jeong et al. (2018a)</td>
</tr>
<tr>
<td>Biecheleriopsis adriatica</td>
<td>10.1</td>
<td>1,119</td>
<td>0.162</td>
<td>0.15</td>
<td>18</td>
<td>Jang et al. (2015), this study</td>
</tr>
<tr>
<td>Effrenium voratum</td>
<td>11.1</td>
<td>340</td>
<td>0.869</td>
<td>2.10</td>
<td>10</td>
<td>Jeong et al. (2014), this study</td>
</tr>
<tr>
<td>Biecheleria cincta</td>
<td>12.2</td>
<td>265</td>
<td>0.490</td>
<td>0.35</td>
<td>27</td>
<td>Kang et al. (2011), Yoo et al. (2013c)</td>
</tr>
</tbody>
</table>

ESD, equivalent spherical diameter (µm); MSS, maximum swimming speed (µm s$^{-1}$).

Table 5. Comparison of maximum growth rate (μ_{max}, d$^{-1}$) and maximum ingestion rate (I_{max}, ng C predator$^{-1}$ d$^{-1}$) of *Oxyrrhis marina* on prey species in diverse orders

<table>
<thead>
<tr>
<th>Prey order / Species</th>
<th>ESD</th>
<th>μ_{max}</th>
<th>I_{max}</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphidiniales</td>
<td>9.7</td>
<td>1.17</td>
<td>2.8</td>
<td>Jeong et al. (2001a)</td>
</tr>
<tr>
<td>Amphidinium carterae</td>
<td>9.1</td>
<td>0.85</td>
<td>6.36</td>
<td>Adolf et al. (2007)</td>
</tr>
<tr>
<td>Karlodinium veneficum NTX</td>
<td>10.5</td>
<td>0.25</td>
<td>2.36</td>
<td>Adolf et al. (2007)</td>
</tr>
<tr>
<td>Karlodinium veneficum TX</td>
<td>10.5</td>
<td>0.41</td>
<td>0.27</td>
<td>Jeong et al. (2018b)</td>
</tr>
<tr>
<td>Gymnodinium smaydae</td>
<td>13.0</td>
<td>-0.18</td>
<td>0.01</td>
<td>Jeong et al. (2017a)</td>
</tr>
<tr>
<td>Paragymnodinium shiwhaense</td>
<td>19.5</td>
<td>0.71</td>
<td>0.51</td>
<td>Yoo et al. (2010)</td>
</tr>
<tr>
<td>Takayama helix</td>
<td>27.4</td>
<td>0</td>
<td>0</td>
<td>Ok et al. (2017)</td>
</tr>
<tr>
<td>Thoracosphaerales</td>
<td>13.5</td>
<td>0.04</td>
<td>0.07</td>
<td>Jeong et al. (2007)</td>
</tr>
<tr>
<td>Luciella masanensis</td>
<td>13.5</td>
<td>0.66</td>
<td>0.33</td>
<td>Jeong et al. (2007)</td>
</tr>
<tr>
<td>Pfiesteria piscicida</td>
<td>13.9</td>
<td>0.22</td>
<td>0.14</td>
<td>Jeong et al. (2007)</td>
</tr>
<tr>
<td>Chlamydomonadales</td>
<td>10.5</td>
<td>0.73</td>
<td>1.29</td>
<td>Fuller (1990)</td>
</tr>
<tr>
<td>Brachiononas submarina</td>
<td>4.1</td>
<td>0.37</td>
<td>2.65</td>
<td>Strom et al. (2003)</td>
</tr>
<tr>
<td>Isochrysis galbana</td>
<td>5.0</td>
<td>0.94</td>
<td>1.43</td>
<td>Kinmane et al. (2006)</td>
</tr>
<tr>
<td>Chattonellales</td>
<td>11.5</td>
<td>1.43</td>
<td>1.25</td>
<td>Jeong et al. (2003)</td>
</tr>
<tr>
<td>Fibrocapsa japonica</td>
<td>20.4</td>
<td>0.72</td>
<td>1.18</td>
<td>Tillmann and Reckermann (2002)</td>
</tr>
<tr>
<td>Eutreptiales</td>
<td>12.6</td>
<td>0.81</td>
<td>2.7</td>
<td>Jeong et al. (2011)</td>
</tr>
</tbody>
</table>

The rates for the species in the order Suessiales are shown in Table 4.

ESD, equivalent spherical diameter (µm).
sons (Jeong et al. 2002, Kang et al. 2013, Yoo et al. 2013, Lim et al. 2017). Thus, there is also a high possibility that these predators encounter and feed on B. adriatica. However, G. dominans and P. kofoidii did not grow on B. adriatica in this study; these common heterotrophic protists may not be abundant as the same time that B. adriatica co-occurs in these waters.

In conclusion, the combination of the results, such as the lower μ_{max} or I_{max} of O. marina on B. adriatica BATY06 than those on other prey species in the order Suessiales and most phototrophic prey species in the other orders; higher threshold prey concentration for the growth of O. marina feeding on B. adriatica than the highest reported abundance of B. adriatica; and no growth of G. dominans, O. rotunda, P. kofoidii, and Strombidinopsis sp. on B. adriatica, suggests that B. adriatica may have an advantage over other competing prey species regarding their survival in marine environments.

ACKNOWLEDGEMENTS

We thank Sung Yeon Lee, An Suk Lim, and Sang Ah Park for technical support. This research was supported by the Useful Dinoflagellate program of Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) and Development of the methods for controlling and managing marine ecological disturbance causing and harmful organisms (MEDHO) funded by the Ministry of Oceans and Fisheries, the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2015M1A5A1041806; NRF-2017R1E1A1A01074419) award to HJJ.

REFERENCES

and in Masan on red from https://doi.org/10.4490/algae.2019.34.5.29

